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THE k SHORTEST ROUTES AND THE k  SHORTEST CHAINS IN A GRAPH 

by 

Michel Sakarovltch 

1.  Introduction 

In a given graph G = (N,A) where N  represents the set of nodes and A the 

set of directed arcs, a length a(x,y)  Is associated to every arc (x,y) E A . A 

route from x  to x  Is a sequence of nodes and arcs 
on 

P= [xo,(xo,x1),x1,(x1,x2)  
Xn-l^Xn-l,Xn^*Xn^ 

such that 

x. e N 1 = 0 ,n 

(x. ..x.) e A      1 = 1 ,n 

A route    P    will also be considered as  a partial subgraph  (see     [21  )  of    G 

containing nodes    x  ,..,x      and arcs    (x  ,x,)   ,...,   (x    ,,x )   .    The length of a on N  o    1 n-1    n 

route    P   Is: 

n 
Ä(P)  = I        a(x       ,x,) 

1=1        1"i    1 

A chain Is a route In which no node Is  repeated.    A cycle Is  a route In which 

no node Is repeated except that    x    = x    .     0    and    D   wll]  be two particular nodes. 

P  (P1)    will denote the    q        shortest  route  (chain)   from    0    to    D    and: 
q   q 

q 
Gn =  (N  ,A )  =    U P 

q      q  q     jssl j 

will be the partial subgraph of G defined by: 

x e N If f x e P  for some j <. q 

(x,y) e A iff (x,y) e P  for some j <. q 

Än = A - An q    q 



In a similar way G', A', A1  and N'  are defined,  k  is the number of routes 
q    q     q q q 

in    G      which we need to generate as    P   ,-....,  P..        i.e.     k      is the min of 
q q+1   '       '     q+k q 

(k - q)     and  (max number of routes  in    G    - q)   , 

Our central problem will be the  construction of the    k    shortest routes  (k 

shortest  chains)   from    0    to    D  .     In this  form,  the problem is slightly more 

general than the one dealt with in     [1],   [6]    and     [3]     and reviewed in     [7]     in two 

respects: 

- Negative lengths are  allowed, provided that no:     "negative cycle"  (a cycle 

along which    £ a(x,y)   < 0)     exist. 

- Attention is not  restricted to  chains. 

Moreover,   this paper is based on the following simple idea: 

At  any stage of the algorithm,   suppose we know the    q  (q  < k)    shortest  routes 

from    0    to    D    and    Pq
+1 Pq

+k      which are the     (q+l)St       (q+k )th 

q
 q     q -q q 

shortest  routes  in    G      ordered  according to increasing lengths.    Pq        is a shortest 

  — st route  from    0    to    D    which has  at  least  one arc in    A    .     The     (q+1) shortest q 

route is obtained by: 

q+1 
^+1    if     ^l) 1 ^l) 

fq+l     if     ^q+l)   <  ^Pq+l) 

G      and the list    P    .    is updated  and the process begins  again. 

The algorithm is initiated by  finding the shortest  routes  from    0    to every 

node using an  algorithm such as the one in     [4]    if all lengths  are nonnegative  and 

the one. in     [5]     if there are negative  lengths. 

In the next section an algorithm to  construct  the    k    shortest  routes  from    0 

to    D    is described  and it is justified  in Section 3.     Since the problem of  finding 

the    k    shortest  chains is of interest  in many applications,   a variant  of the 

algorithm presented in Section 2 which exhibits  the    k    shortest  chains  is  described 



in Section A.  Attention is drawn to the fact that minor modifications of these two 

algorithms allow to find the routes (chains) shorter than a given length.  If 

capacities were to be considered, an immediate application of this last problem 

could be:  what quantity can be shipped from 0 to D if we demand that the 

maximum time of travel be less than or equal to a certain given number. 

2.  Algorithm For Finding The k Shortest Routes 

Step 0. - Find all the shortest routes from 0 to D : P P 

If q ^ k , terminate. 

Determine for all x e N : 

TTCX) = shortest distance from 0 to x . 

n(x) = shortest distance from x to D . 

Note that P^   does not exist (the length of a route which does 

not exist is taken as infinite), 

k = 0 . 
q 

Step 1. - Let: 

(1) Cq(x) = 

/ 
Min,  v  7 {T(y)+a(y,x)} for x c N 

(y,x) e A  w q 

Tr(x) for x «! N 
q 

(2)        E = {x e N | C (x) + n(x) = Min [c (y) + n(y)3 = ^ } 
q yeN  q l 

If ir = » and k + q < k : terminate, the problem is infeasible, 
q q 

Determine m by: 



Let: 

P
q+i
=Pq+i i= l....- 

G B  = G q+m   q 

pqtüx- = pqL x-       i = ! (k -m) q+m+i   q+m+i '      H 

q = q +m 

j = 0 

For each x e E generate all the routes R, .  from 0 to 
(ox) 

x , the last arc of which belongs to Ä , and, the length of which 

is ^ (x) ; this is easily done by backtracking in the definition of 

C (x)  and n(x) .  Similarly generate all the chains C, nv  from 

x to D of length n(x) . 

By combining a route    R.    *     with a chain    C,  nv     and  repeating 

the operation for all    x e E  ,  all the routes from    0    to    D    of 

length    u      can be generated.     Lets  call  them    P  .,...,  P.     .    We 
q q+1 *     q+n 

need only to generate at most    k - q    of  them. 

If    n 21 k - q    let    P  ...  ^ P   ..  j  =  1 k- q  ;   terminate, 

solution has been obtained. 

Go to Step 2. 

Step 2.  - Let    j  = j + 1 

If    j  > n    go to Step 1. 

P        = Pq 

q+1        q+j 

G _= G   U  ?\. 
q+1 q q+j 



If the set of arcs in G ,. - G  is empty let: 
q+i  q 

Pq!L = P^.       1 < i < k q+l+i    q+i —  — q 

q = q + 1 

Go to Step 2. 

If the set of arcs in G .. - G  is not empty, they form a simple 

route C,, from 0.  to D. (0., D. e G )  (of Lemma 5). 
j       3 J  J  J   q 

Let R = (I^,..,^) , S = (S1,...JSs) , T = (T^..,^)  be 

respectively a set  cf  routes  from    0    to    0.   ,   from    D,     to    0. 
J        J      J 

and from D.  to D , obtained by considering parts of: 

- Those, routes from 0 to D which contain 0. ; 
J 

- Those routes from 0 to D which contain D.  and then 
J       

V 
- Those routes from 0 to D which contain D . 

Generate new routes in G , according to increasing lengths, 

by taking the union of a part of a route in R , from 0 to 0. , 

route C. and a part of a route in T  from D  to D .  Insert 

those newly created routes in the sequence P^   so that the new 

sequence is still ordered according to increasing lengths.  Generate 

new routes until exhaustion of possibilities or until the 

p =k-q-n + i-l 

first, elements of this new sequence have been created. 

If S = 0 go to Step 4. 

Let u = 1 . We will call route of order u a route which contains 

(u+1)  times route C,  (and u times an element of S ).  For 

instance a route of order 1 is the union of a route in R , route 



C. , a route in S , route C. , a route in T . 

Go to Step 3. 

Step 3. - Generate routes of order u according to increasing lengths and 

their elements in the sequence just generated in such a position 

that the sequence is still ordered according to increasing lengths 

either until exhaustion oi possibilities or until the p  first 
q 

elements of the sequence have been generated. 

If the first route of order u is among the p  first elements let 

u = u + 1  and go to Step 3. 

If not, go to Step 4. 

Step 4. - Let q = q + 1 

Denote by P ,•  the elements of the sequence just generated and by 

k  their number. 
q 

Go to Step 2. 

3.  Justification Of The Algorithm 

Let 

A = {(x.y) e A | Tr(y) - Tr(x) = a(x,y)} 

G = (N,A) 

Lemma 1.   - A necessary  and sufficient  condition  for a cycle to be of    0    length 

(0-cycle)  is that  it be contained in    G  . 

Proof: 

(1)       If a cycle     [x  »x. x    -,x    = x ]     belongs to    G  ,  it  is  a    0    cycle, ■'               o    1 n-1'  n        o                 0                                                J 

7i(x  )   - 7i(x )   - a(y   ,x ) 
,1 ,0              (c     1 
i i                  i 

t *                  i 

nx  )   - Tr(x      )   =  a(x     ,,x ) 
o n-i               n-i     o 

=  I "  a(xi_1»xi) 
v -.-. 1 



(ii)    Let    C    be  a    0    cycle.     For all the  arcs     (x.y)   e C    we have by 

definition of     i\   : 

Ti(y) - TT(X)   <_ a(x,y) 

If for one arc we had strict inequality by adding these relations for 

all arcs of  C , we would obtain 0 < Ü(C) which contradicts the 

assumption. 

q.e.d. 

Lenuna 2.  - All routes  in    G    from    0    to a given node    z    have the same  length: 

TI(Z)   .     Any route not  completely included  in    G    has a larger length. 

Proof; 

Obvious, since along any route of G 

TT(y) - Tr(x) = a(x,y) 

and  for  a route not  completely  included in    G   ,  we would have on at  least  one arc: 

Tr(y)  -  TT(X)   < a(x,y)   . 

q.e.d. 

Lemma 3. - A necessary and sufficient condition for n to be finite at the end of 

Step 1 is that P , .  do not contain a 0-cycle. 
q+j    " 

Proof; 

Suppose    Pq contains  a 0-cycle,   then the routes obtained by  the union of 

P and    i    times  this  0-cycle are of same  length    TT      for any positive  integer 

i   . 

If there is an infinite number of routes of length ir  , there, is an infinite 
q 

subset   of   these routes   the  elements  of v;hich differ   from one  another  by  the 

addition  of a cycle  a certain number of  times  since the number of  chains  from    0 



to D is finite.  The length of this cycle is thus 0 . 

q.e.d. 

Lemma 4. - IT , as defined in (2) , is the shortest length of all routes not 

completely Included in G  . 
q 

Proof; 

* 
It is sufficient to show that for each route P  which contains at least an 

arc (x,y) in A , 2,(P ) > TT 
'■'       q '        q 

From the definition of TT and n we have: 

(3) )t(P*) >. TT(X) + a(x,y) + n(y) 

But from (1) : 

IT(X) + aCx.y) >_ C (y) 

and  the property of shortest distances  that: 

Tt(y) 1 ^(x)  + a(x,y) 

Then,  from    (2)   : 

C (y) + n(y) >. n 

which together with (3)  implies; 

A(P*) > * - q 

q.e.d. 

Lemma 5. - In Step 2 the set of arcs in G ., - G  is either empty or forms a 
         ^ q+1   q 

simple route C^  from (K  to D. (0., D, E G ) . This route is either a chain 
j       j     j  J  J   q 

or a simple cycle in which case D. - 0, . 
J   J 



D 

Figure 1 

Proof: 

If the set of arcs in G G  Is not empty,  P , .  includes successive q+1   q * J,       q+J 

5^ sequences of arcs of A ; let C  be the last of these sequences when P ..  is 
q       j q+3 

described from 0 to D .  C.  forms a route from 0. (e G )  to D. (e G )  since 
J J   q     J   q 

C.  is a subset of P .. . 
j q+j 

The part of P ,.  from 0 to 0.  is included in G for if it were not, it 
q+J J 

would be possible, frrm Lemma 2, to construct another route shorter than TT  and 
q 

which would have the arcs of C,  outside of G  thus contradicting Lemma 4 and 
j q b 

similarily for D  to D , proving 3 a single path C. . 

Suppose that a proper subset of C  forms a cycle.  If this cycle was a 0-cycle 

from Lemma 3,  n would be infinite and the algorithm would have been terminated at 

the end of Step 1. 

If this cycle had a positive length, it would be possible by deleting it from 

P,  to construct a route not completely included in G  and of length < tr  , thus J r J q e     q » 

contradicting Lemma 4 again.  Thus if there is a cycle, it can only be simple. 

q.e.d. 

The following lemma is not crucial for the proof of the theorem, however, it 

helps understanding of the algorithm. 

Lemma 6. 
q  q-i 

Proof: 

sq It is impossible that  TT 
<  ^  _■,     since ? . .  is not among the q shortest 

q+j 
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routes. 

Suppose ir = Ti  , . Then 3 ixty)   e  A    0 Pq,. for which r (y) + n(y) = q   q-1           *   >"          q   ^^ q 

v    = v    .    but then P ., would have been discovered at a previous passage and q   q-1           q+1 r       r   & 

(x,y) would have been added to A , thus a contradiction. 

q.e.d. 

Theorem 

The algorithm leads to a solution in a finite number of steps, or shows that 

no solution exists. 

Proof; 

In Steps 2 and 3 the sequence Pq  , . ., P , v.  is generated so that this 
q     q q 

sequence is at hand at beginning of Step 1.  Then P ..  Is either the shortest 

route completely included in G , Pq . , or the shortest route containing some arc 

in Ä , P .,  (Lemma 4). q   q+1 

If the number of routes in G . (k + q) , is less then k and- if there does 
q  q 

not exist routes outside those in G (n    =  »)  the problem is infeasible. 
q q 

Each time Step 1 is described, some arcs are added to G   so that we can only 
q 

go a finite number of times through Step 1. 

We cannot cycle indefinitely in Step 3 since each time we go through Step 3, 

at least, a new route is added to the updated sequence and we do not want more than 

p  routes. 
q 

Now we can go only a finite number of times through Step 2 since at each 

passage the index j  is increased by one unit and when j > n we go to Step 1. 

q.e.d. 

4.     Variant  Of The  Preceding Algorithm To  Find The    k    Shortest  Chains 

The basic  idea of   this  variant  is  to  perform the  algorithm of  Section  2  and 

to  keep  the   routes  thus   generated  only  if  they  are   chains.     Two main  differences 
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with the initial algorithtri justify a rewriting of the algorithm: 

- When a 0-cycle is met, no new chain will ever be constructed. 

- Routes of order u jl 1 will not give rise to any chain and Step 3 can be 

skipped. 

Step 0'. - Find all the shortest chains from 0 to D : P' ,., P' . 
1     q 

If q fl k , terminate. 

Determine for all x e N : 

ii(x) = shortest distance from 0 to x . 

n(x) = shortest distance from x to D . 

k' = 0 . 
q 

Step 1'. - Define: 

{Min.  v  -  {Tr(y) + a(y,x)}   for x £ N 
(y.x) e A   '    w' q 

q 

IT(X) for x jf N 
q 

(2) E = {x e N | Ca(x) + n(x) = Min U (y)+n(y)] - *) 
q yeN  q q 

If Tf = oo and k' + q < k : terminate, the problem is infeasible. 
q       q 

Determine m by: 

Let: 

P'  = P,q i = 1    m 
q+i q+i X       ■L m 

G'   = G' 
q+m q 

P'f^. = P'^ ,. i = l,..Ak'   -m) 
q+rrrf-i   q+:.;fi q 

q = q + m 

j = o 
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For  each    x e E    generate  the routes    R,     .      from    0    to    x  , 
(ox) 

the last arc of which belongs to Ä  and the length of which is 

C (x) ; this is easily done by backtracking in the definition of 

C (x)  and TI(X) .  Similarly generate all the chains C, „x  from q (xD) 

x to D of length n(x) . 

By combining a route R,  .  which a chain C,  ^     in such a 
(ox) (xD) 

way that no newly constructed route from 0 to D contains a 

cycle counted more than once, a finite number n of routes from 

0 to D of length TT  , Pq   ,.., Pq   are generated. Among 

those are all the chains of length TT  and having a nonempty inter- 

section with Ä . 
q 

Go to Step 2'. 

Step 2\   - j = j + 1 

If j > n go to Step 1'. 

If P^,  is a chain, let P',, = Pqi  . 
q+J q+1   q+j 

Let 

(q + 1 i if       Pq ,  Is a chain 
q+j 

therwise 

G', = G' U P** 
q  q  q+j 

If the set of arcs in G', - G'  is empty, let 
q   q 

k', = k' 
q  q 

p'?' = p,q     i < i < k1 q'+i   q+i        —  — q 

q = q' 

Go to Step 2'. 
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If the set of arcs in G', - G'  is not empty, it forms a simple 

route C,  from 0,  to D, .  Let Cl  be the subset of C. which 
J       j      J        1 J 

is a chain from 0.  to D. . 
J      j 

Let 

R1 = (R] .. R') , T1 = (T1 .. T1) 

be respectively a set of chains from 0 to 0. , from D,  to D 
J        J 

obtained by taking parts of: 

- Those chains from 0 to D which contain 0, . 
J 

- Those  chains  from    0    to    D    which contain    D,   . 
J 

Generate new routes in    G',   ,  according to increasing lengths, by 

routes  taking union of a chain in    R'   ,  chain    C',     and a chain in 

T'   .    Keep only those routes which are chains  and insert  them in 

the sequence    P'TJ     SO that   the new sequence be still ordered 

according to increasing lengths.     Generate new chains until 

exhaustion  of possibilities or until the    k - q + j  - 1    first 

elements  of the new sequence have been generated. 

Let 

q =  q' 

Denote by    ?'_£,     the elements of the sequence just generated 

and by    k1     their number. 
q 

Go to Step 2'. 

This algorithm, as well as algorithm of Section 2, can be 

slightly modified in order to produce, respectively all the chains 

(routes) which are shorter than a given length L  (or within x% 

of the length of the shortest chain (route)). 

T 
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5.  Examples 

Suppose we want to find the four shortest routes and the four shortest chains 

In the following graph: 

a)  Four Shortest Routes 

1)  Step 0. - The shortest route is unique P = [0, 1, 2, D]  A = {(01), (12), 

(2D)}  UP-P = 6 

2)  Step 1. - 

Nodes TT(X) n(x) ^(x) n(x)+c1(x) 

0 0 6 3 9 

1 1 5 00 00 

2 4 2 00 00 

3 6 2 6 8 

D 6 0 8 8 

E - {3, D} 

u «= 8 

P'     does not exist 

P^ =   [0,  1,  2,  3,  D] 

n = 1 



3)       Step 2.  - 

j  =  1 

P    = P' 
2       r2 

15 

Gn  = G1UP2 
i.e.   : 

There is no other route  in    G      than    P       and    P    ,  i.e.     P 

does not exist,    k    = 0   . 

Go to Step 2. 

^)       Step 2.  - j  = 2  > n   :  go to Step  1. 

5)      Step 1.  - 

Nodes n(x) ;2(x) n(x)+c2(x) 

0 6 3 9 

1 5 CO 00 

2 2 00 00 

3 2 8 10 

D 0 00 00 

E =  {0} 

TI2 = 9 

Since    P„    does not  exist    m = 0 

P^ =   [0,   1,   2,   0,   1,   2,   D] 

n -  1 

Go  to Step 2. 



6)      Step  2.   - 

16 

G„  = 

j  = 1 

P3 = ^3 

G2UP2 i.e, 

C3 =   (2,  0) 

P^ =   [0-1-2-0-1-2-3-D] 

Wp ■= n 

If we go to Step  3 and generate the shortest  route of order  1, we 

find 

P^ =   [0-1-2-U-1-2-0-1-2-D] 

A(P^)  = 12 

and we insert it in the sequence after P, 

Go to Step 2. 

7)  Step 2. -j=2>n-l,goto Step 1. 

8)  Step 1. - 
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Nodes n(x) C3(x) n(x)+c3(x) 

0 6 00 00 

1 5 oo oo 

2 2 CO 00 

3 2 8 10 

D 0 00 00 

E = {3} 

^ = 11 

and 

P4 = p3 = [o-3-D] 

terminate. 

b) Four Shortest Chains 

Up to stage  (6)  the two algorithms give the same result i.e. 

Pj = [0, 1, 2, D] 

P^ = [0, 1, 2, 3, D] 

6') Step 2'. - 

j "  1 

q' = q - 2 

G' = G' U P23 

2 
No new chain in  G' ; P'  does not exist,  k' -- 0 

Go to Step 2'. 



7')  Step 2'. -j=2>n=l go to Step I1 

8')  Step 1'. - 

.18 

Nodes n(x) C2(x) n(x)+c2(x) 

0 6 00 00 

1 5 00 00 

2 2 00 00 

3 2 8 10 

D 0 00 oo 

E - {3} 

"3=10 

2 
P'  does not exist so m = 0 

P3 = [0, 3, D] 

n = 1 

Go to Step 2'. 

9')  Step 2'. - j = 1 

P^ is a chain: P^ = P^ = [0, 3, D] 

G' ^ U P* = G 

There is no chain outside P' P' P' in G' ; i.e., Pi 
12    3 3 4 

does riot  exist,    k' = 0  . 

Go to Step 1'. 

,3 

10»)  Step  1'.  - 

Nodes n(x) c3(x) n(x)+;3(x) 

0 6 00 CO 

1 5 ^n 00 

2 2 3: CO 

3 2 00 00 

D 0 '., cc 



.19 

k^ + 3 = 0 + 3<4 

Problem is Infeaslble. 

"T 
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